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The gas-microphone method of recording a photoacoustic ( PA) Rosencwaig-Herschow signal is extended 

theoretically for consideration of material evaporation of a sample. For an excitation source of constant 

intensity and exponential saturation of vapor concentration, relations are derived to describe the transient 
dynamics of the PA response. 

The method of photoacoustic (PA) spectroscopy is often employed for sufficiently high-power excitation 
sources when transport phenomena at the boundaries of the sample exert a pronounced influence on the PA signal 
[ 1-3 ]. In the general case of nonharmonic excitation, allowance for these phenomena is a complicated experimental 
and theoretical problem whose solution is necessary for correct interpretation of the data of PA measurements. In 

the present communication, one of the most verified experimental models [4 ] (the gas-microphone method of 
recording a PA signal) is developed to allow for material evaporation of a sample and to analyze numerically the 
dynamics of the PA response. 

Consider the widely adopted scheme in which two light beams impinge on an optically and thermally thick 
[4] sample, namely, a high-power beam with an arbitrary dependence of intensity on time described by a 
dimensionless function f(t) and a weak probing beam with harmonic intensity modulation. Assume that the material 
evaporation of the sample is caused only by the first beam. Assuming additivity of the heat fluxes emerging upon 

absorption of the beams, the temperature field in the region of the detection gas and the sample can be represented 

in the form 

T ( x , t )  = O  R(x , t )  + O ( x , t ) ,  (1) 

where OR(X, t) is the temperature field corresponding to the second beam: O(x, t) is temperature variation caused 
by the first beam. Then the problem of T(x, t) determination is split into two: 

O20R/OX 2 = ( 1 / a )  OOR/Ot -- (QR/2k) (1 + exp (/tot)) exp (fix), 

020g / o x  2 = ( l / a g )  O~R/OI , O R (x, O) = 0  g (x, O) = T O , (2a) 

o R (o, t) = (o, t ) ,  ko% (0, t ) /Ox = kgO0  (0, t ) /Ox ; 

O20/OX 2 = ( l / a )  dO/Ot -- (Q/k) f (t) exp (fix), 

o20g/ox  2 = ( I / a g )  OOg/Ot, O (x, O) = 0 g (x,  O) = O,  

0 (0, t) = 0 g (0, t) , kO0 (0, t ) /Ox  - kgO0 g (0, t ) /Ox  -- ~] ( O f  (t) - qdn/d t ) .  (2b) 

Gomel F. Skorina State University, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 70, No. 
1, pp. 153-155, January-February, 1997. Original article submitted July 25, 1994. 

1062-0125/97/7001-0157518.00 �9 1997 Plenum Publishing Corporation 157 



Here, the quantities without indices and tlaose with the index "g" pertain to the sample and the  detection gas, 
respectively; a ,  a s, and k are the thermal diffusivities and thermal conductivity, respectively;/5 is the coefficient 

of light absorption; Q, QR are the power densities of the heat sources in the sample for the first and second beams, 
respectively; TO is the ambient  temperature;  r/ = 1 m is the dimensionali ty factor; q is the specific heat of 
vaporization; r/if) is the concentration of the vapor formed, which is considered to be independent of the x- 

coordinate (in the sample, x < 0); ca is the modulation frequency of the probing beam. In system (2b) motion of 
the gas-sample interface is neglected. 

Assume that a solution of problem (2a) is known [4 I. Then consider problem (2b). Assuming n(0) = 0 and 

applying Laplace transformations in the traditional way, we arrive at transforms of the functions 0 and 0g: 

0 L (x, s) = A (s) exp (ax) + kQG (s) exp (f lx) / (e  2 - f12), 
(3) 

0gL (x, s) = ag (s) exp ( -  ctgx) . 

Here tr = ( s /a )  I/2, crg = (s/ag) t/2, G(s) = L(f(t)) is the transform of f(t). The constants A, Ag are determined from 

boundary conditions (2b): 

A (s) = A$ (s) - kQG ( s ) / ( o  2 - f12), (4) 

(s) = (p / s  1/2) {QG (s) t r /+  1 / ( o  + fl)] - qlsnL (s)},  Ag 

w h e r e p  - ( k / a  !/2 + kg/agll2); ql = )lq; nL(s) m L(n(t)).  
From (3) it is seen that Ag(t) describes the change in the gas temperature near the sample surface (x '= 0) 

due to the evaporating beam and is determined by the form of f(t)  and n(t). 
Let 

1 ,  t > 0 ,  
[ ( t ) =  , t < 0 ,  n ( t ) = n  0[1  - e x p ( - - A t ) ] .  (s) 

Relations (5) at 2, no > 0 correspond to the case of quick switching of an evaporating beam of constant intensity 
and exponential law saturation of the vapor concentration. In this case, an exact solution [5 ] can be obtained for 
Ag(t) from (4): 

ag ( t )  = p Q  {2 ( r /+  f l - i ) ( t / z r ) l / 2 +  f l - 2 a - i / 2  Iexp(yt)  er fc(yt ) l /2  - 1 ] } -  

1/2 
(,It),. 2) 

_ 2pqlnO (~./~)1/2 exp ( -  at) J exp (~ d~,  (6) 
o 

where 7 = aft 2, erfc (z) = 2at-t,'z 7 exp(-02)  dO. 
Z 

Next,  we assume that the approximations [4] and the piston model are valid for calculation of the PA 

signal. Then the amplitude qPA of the PA signal is as follows 

qPA = I QPAI , QPA = Y0 (P0 + P (t)) 00/[21/2lgag (T O + (0g)) 1, (7) 

where the notation of [4 ] is preserved; P(t) = ~n(t)koT o is the pressure variation in a cell due to the partial vapor 
pressure; ko is the gas constant; ~ = l kg - l  is the dimensionality factor; <0g> is the mean temperature variation 

within the limits of the piston due to the evaporating beam. As a first approximation, we take 
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Fig. l. Plots of As(t) and n(t) (inset) ate1 = 0.01 (1, 5), 0.1 (2, 6), 0.5 (3, 7), 
1 (4), I0 (8). A s, K; n, kg/ma; t, sec. 

Fig. 2. Plot of qpA(t) at~t =0.01 (1), 0.1 (2), 0.5 (3), l (4), 10 (5). qPA, mPa. 
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Then  from (7) we finally obtain 

where the following notation is adopted 

# )  = A 8 (t)  . 

QP^ = - ifl/~2YoloF/ (25 / 2kaglg) , 

(8) 

F = ~nok 0 (I - exp ( -  ~.t)) + IP 0 + ~nok 0 (1 - exp ( -  ~.t)) (OR)I/(T 0 + A$ (t)) ; 

(9) 

(OR) = -- i (27/2:tk) - l  fl/z210 exp (tot - ~ / 4 ) .  

Here  I 0 = Q ~ - l ,  1 = Qfl-I  are the intensities of the second and first beams;/~ is the thermal diffusion length [4 ]. 

Note that the light intensity at which evaporation must be taken into account can be evaluated from bound-  

ary condition (2b) for fluxes: 

[Qf (t) - qdn/dtlx= o > 0 .  (10) 

Hence, for t -- 0 with consideration of (7) we can write 

1 > q2nofl -~ . (11) 

Figures I and 2 show dependences of the surface temperature Ag(t) and the ampli tude of the PA signal 

qpA(t) obtained from relations (6) and (9) with estimated data close to the constants of ethyl alcohol 16 ] for a PA 

cell filled with air under  normal conditions (1o = 1 W/cm 2, w = 630 Hz, q = 106 J /kg ,  and no = 2 kg/m 3 is evaluated 

by the concentration of the saturated vapor). II is seen that in the presence of saturation the amplitude charac- 

teristics of the PA signal change considerably (Fig. 2). For the above data, the dependences  qpA(t) and n(t) (Fig. 

1, inset) almost coincide in form, which points to the predominant contribution of the partial pressure of the vapor 

formed to the PA signal as compared to the contribution of temperature changes caused by the evaporating beam. 

The  saturation times of the quantities qeA(t) and n(t) are also practically equal for the same A values. The  reported 
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data illustrate the possibility of investigating the dynamics of evaporation processes, in particular, the time depend- 

ence of the concentration of the vapor formed by methods of PA spectroscopy. 

In the case of fast processes of evaporation the surface temperature of the sample can decrease (Fig. 1, 
curves 1 and 2), which leads to a competing influence of the contributions determined by temperature variation 

and an increase in the partial vapor pressure on the PA signal. In this case, the amplitude of the PA signal passes 

through a small maximum (Fig. 2, curve 5). 
Thus, based on an exact solution of a system of heat conduction equations, a fairly simple model is proposed 

which describes the dynamics of the amplitude characteristics of the PA signal in the presence of material 

evaporation of the sample. The results obtained can be used to choose regimes of PA measurements when 

evaporation is negligible as well as to determine thermophysical and other parameters of condensed media with an 

intense lst-kind phase transition by the PA spectroscopy method. 
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